top
请输入关键字
孙铭阳
研究员,博士生导师
博雅青年学者
电子邮箱:smy@pku.edu.cn
工作经历:
2024.06-至今 研究员,博导, 33678新甫京国际品牌工业工程与管理系
2019.09-2024.06 “百人计划”研究员, 博导,工业控制研究所,控制科学与工程学院,浙江大学
2021.04-至今 荣誉助理教授(Honorary Lecturer), 控制与电力研究所,电气与电子工程学院,英国帝国理33678新甫京国际品牌
2017.03-2019.09 博士后(Research Associate),DSA Affiliate Fellow, Imperial Consultant 咨询与数据分析师,电气与电子工程学院,英国帝国理33678新甫京国际品牌
教育经历:
2012.11-2017.03 电气与电子工程, 博士学位, 控制与电力研究所,电气与电子工程学院,英国帝国理33678新甫京国际品牌
2011.09-2012.11 控制系统, 硕士学位, 控制与电力研究所,电气与电子工程学院,英国帝国理33678新甫京国际品牌
2007-2011 测控技术与仪器, 本科(工学学士)学位, 机械工程学院,大连理工大学
研究方向:
低碳能源系统智能优化决策,能源系统大模型与大数据分析,新型电力系统信息物理安全
主要荣誉:
2022 国家海外优青
2022 浙江省特聘专家.
2021 中国科协青年人才托举工程
2022 浙江省“万人计划”青年拔尖人才
2021 英国帝国理33678新甫京国际品牌 Honorary Lecturer
2016 PMAPS Roy Billinton Student Paper
2016 IEEE PES General Meeting 2016会议最佳论文奖
2022 IEEE TrustCom 2022最佳论文奖
2022 Applied Energy近五年高被引论文TOP25
2023 IEEE Trans. on Smart Grid 2023年度最佳论文奖
2023 IEEE PandaFPE 2023 The Best Presentation Award
2021 CCF-腾讯犀牛鸟基金优秀专利奖,CCF-腾讯屏牛鸟基金优秀合作奖
2021 CCF YOCSEF 杭州2021年度论坛最佳影响力奖, 论坛最佳影响力奖
部分论文列表:

[1]  M. Sun(第一作者), T. Zhang, Y. Wang, G. Strbac and C. Kang, "Using Bayesian Deep Learning to Capture Uncertainty for Residential Net Load Forecasting," in IEEE Transactions on Power Systems. vol. 35, no. 1, pp. 188-201, Jan. 2020.

[2]  M. Sun(第一作者), I. Konstantelos and G. Strbac, "A Deep Learning-Based Feature Extraction Framework for System Security Assessment," in IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 5007-5020, Sept. 2019.

[3]  M. Sun(第一作者), I. Konstantelos and G. Strbac, "C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data," in IEEE Transactions on Power Systems, vol. 32, no. 3, pp. 2382-2393, May 2017.

[4]  M. Sun(第一作者), Y. Wang, G. Strbac and C. Kang, "Probabilistic Peak Load Estimation in Smart Cities Using Smart Meter Data," in IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1608-1618, Feb. 2019.

[5]  M. Sun(第一作者), F. Teng, X. Zhang, G. Strbac and D. Pudjianto, “Data-Driven Representative Day Selection for Investment Decisions: A Cost-Oriented Approach,” in IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 2925-2936, Jul. 2019.

[6]  M. Sun (第一作者), Y. Wang, F. Teng, Y. Ye, G. Strbac and C. Kang, “Clustering-Based Residential Baseline Estimation: A Probabilistic Perspective,” in IEEE Transactions on Smart Grid. vol. 10, no. 6, pp. 6014-6028, Nov. 2019.

[7]  M. Sun (第一作者), G. Strbac, P. Djapic and D. Pudjianto, “Preheating Quantification for Smart Hybrid Heat Pumps Considering Uncertainty,” in IEEE Transactions on Industrial Informatics, vol. 15, no. 8, pp. 4753-4763, Aug. 2019.

[8]  M. Sun (第一作者), F. Teng, I. Konstantelos, G. Strbac, “An objective-based scenario selection method for transmission network expansion planning with multivariate stochasticity in load and renewable energy sources,” in Energy, vol. 145, pp. 871-885, Feb. 2018.

[9]  M. Sun (第一作者), J. Cremer, Goran Strbac, “A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration,” in Applied Energy, vol. 228, pp. 546-555, Oct. 2018.

[10] M. Sun (第一作者), P. Djapic, M. Aunedi, D. Pudjianto, G. Strbac, “Benefits of smart control of hybrid heat pumps: An analysis of field trial data,” in Applied Energy, vol. 247, pp. 525-536, Aug. 2019.

[11] Y. Ye, D. Qiu, M. Sun*(通讯作者), D. Papadaskalopoulos and G. Strbac, “Deep Reinforcement Learning for Strategic Bidding in Electricity Markets,” in IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1343-1355, March 2020.

[12] L. Zeng, M. Sun*(通讯作者), etc., “Physics-Constrained Vulnerability Assessment of Deep Reinforcement Learning-Based SCOPF,” in IEEE Transactions on Power Systems, vol. 38, no. 3, pp. 2690-2704, May 2023.

[13] Z. Zhang, M. Sun*(通讯作者), etc.,“Physics-Constrained Robustness Evaluation of Intelligent Security Assessment for Power Systems,” in IEEE Transactions on Power Systems, vol. 38, no. 1, pp. 872-884, Jan. 2023.

[14] X. Wan, M. Sun*(通讯作者), etc., “AdapSafe: Adaptive and Safe-Certified Deep Reinforcement Learning-Based Frequency Control for Carbon-neutral Power Systems”, in AAAI-23, Washington, US, 2023. (国际人工智能顶会, CCF-A

[15] X. Wan, L. Zeng, M. Sun*(通讯作者), “Exploring the Vulnerability of Deep Reinforcement Learning based Emergency Control for Low Carbon Power Systems”, IJCAI 22, 2022. (国际人工智能顶会, CCF-A