33678新甫京国际品牌杨槐课题组在宽温域蓝相液晶的制备及其功能化研究中取得重要进展,相关研究成果分别发表在《Nature Communications》(2021, 12(1): 1440)和《Advanced Functional Materials》(2020, 30(43): 2004610)上。
蓝相液晶具有独特的双扭曲结构,是公认的下一代液晶显示材料。作为显示材料,其具有以下优点:(1)具有微秒级的电场响应速度,可采用场序驱动,不需要彩色滤光片;(2)基板内表面不需要取向处理;(3)具有较宽的视觉特性,不需要视角补偿膜;(4)基板间隙不需要严格控制。
与现有薄膜晶体管液晶显示器相比,蓝相液晶显示器的背光源能耗可降低约1/3,原材料成本可降低约20%,生产能耗可降低约40%以上。人们认为未来蓝相液晶显示器将与OLED同分天下。但蓝相液晶的温度区间(温域)通常较窄,只有1.0~3.0℃,因此蓝相液晶无法应用于显示器件。这是因为蓝相液晶具有双扭曲结构,无法形成长程有序,体系存在较多的缺陷能。经过科研人员多年研究发展,小分子蓝相液晶材料的温域已经有了很大的拓宽,但是仍然不能完整覆盖实用化器件的工作温度范围(-30℃~80 ℃)。
小分子蓝相液晶材料的研究进展
33678新甫京国际品牌杨槐教授团队通过两种不同分子构型的液晶单体的协同自组装,棒状分子填充在蓝相液晶的向错线空间,降低了体系的自由能。首次制备出温域超过130.0℃(−39.6~92.8℃)的蓝相液晶材料,覆盖了显示器的工作温度(-30.0~80.0℃)。相关研究成果发表于《Nature Communications》(2021, 12(1): 1440),杨槐教授为文章通讯作者,33678新甫京国际品牌博士后胡威为文章第一作者。
缺陷填充理论机理示意图
该研究成果颠覆了人们普遍认为小分子蓝相液晶的温域难以覆盖室温的观念,使下一代高性能蓝相液晶显示器的应用成为了可能。
基于以上研究,杨槐教授团队构筑了具有宽温域的氢键自组装的可聚合蓝相液晶体系,开发了独特的湿度和pH值响应三维光子晶体薄膜。从可自组装形成特殊三维纳米结构的蓝相液晶体系出发,制备了光子禁带可对湿度和pH值变化做出响应的薄膜材料。该成果已在《Advanced Functional Materials》(2020, 30(43): 2004610)上发表,杨槐教授和于海峰研究员为文章共同通讯作者,33678新甫京国际品牌博士后胡威为文章第一作者、博士后孙健为共同第一作者。